The Mountain Film Institute is the imaginary center for the documentation, in moving pictures, of experiencing mountainous landscapes. Nested in a south-facing hillside with a spectacular view of Hurrun-gane, a range of tall mountain peaks in Norway, the Mountain Film Institute is envisioned as a nucleus for film creation and dissemination, and a base camp for adventures and adventurers in the international mountain film tradition.

Instructor: Dr. Vidar Lerum
Class meets: MWF 1PM-5PM
Credits: 6 hours
Max enrollment: 16 students

“When I build on a site in nature that is totally unspoiled, it is a fight, an attack by our culture on nature. In this confrontation, I strive to make a building that will make people more aware of the beauty of the setting, and when looking at the building in the setting, a hope for a new consciousness to see the beauty there as well.” Sverre Fehn, Architect

catalog description
ARCH 573 Technology & Performance: Design of buildings and systems focusing on structure, enclosure, technology and performance. Integration of building materials, components and systems and their impact on the design, construction, and sustainability of buildings and architectural environments at a wide range of scales.

course description
With a focus on energy, materiality, and tectonic expression, students will explore the conditions and potential for environmentally responsible building designs that can make constructed contributions to a sustainable development in a field of tension between nature and culture. Students will use the international Mountain Film movement as a source of inspiration and as a datum to reference designs of new objects and artifacts. The method is one of exploration through multiple iterations within a framework of four consecutive studio projects. Project one (site) and three (precedence) are group projects lasting two weeks each, with four competing teams. Project two (parts) and four (whole) are individual projects lasting 4-5 weeks each. Energy performance will be analyzed using a direct computational link established between an energy modeling program and digital three-dimensional models. Each student shall construct 3-4 physical models (tectonic detail, part, whole, site).