The increasing ubiquity of digital technologies, sensors, and location-aware applications in our everyday experience allows for a seamless transitioning between the visible and the invisible infrastructure of cities: transportation systems, building complexes, and energy systems, all of which are contributing to an increasingly interactive and responsive environment. Those information networks are transforming the way we conceptualize cities – along with the tools we use to design them and their impact on physical structures.

A smart city, according to the global engineering firm ARUP, is one in which citizens are not only engaged and informed in the relationship between their activities, their neighborhoods, and the wider urban ecosystems, but are actively encouraged to see the city itself as something they can collectively tune, such that it is efficient, interactive, engaging, adaptive and flexible, as opposed to the inflexible, mono-functional and monolithic structures of many twentieth century cities. [1] However, it is the opinion of urbanist Shannon Mattern as well as many other designers, that we should push this vision even farther: the city should be not only tune-able, but also intelligible, tinker-able and hack-able. The future cities that we are developing should position themselves in opposition not only to the inflexibility and mono-functionality of twentieth century cities, but also to the proprietary, trademarked “smartness” that is the dominant model for twenty-first-century cities. [2]

UX This interdisciplinary graduate seminar positions user experience [UX] as the key intersection within the design of Smart Cities as well as a broader system of interconnected devices. The course is structured as a workshop – it will bring together students from industrial design, communications, and architecture coming together to investigate opportunities and challenges in the emerging field of responsive environments. By the completion of this course, students will have an understanding of how new technologies and human-centric design methodologies can be applied to improve urban systems and will be able to demonstrate their ability to test, synthesize, script, fabricate, video record, and prototype their interactive proposals that are responsive to challenges and opportunities in an increasingly digital society.

[1] ARUP. *Smart Cities: Transforming the 21st century city via the creative use of technology*, June 2011, p8